- basis of topological space
- Математика: базис топологического пространства
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Topological space — Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion. The… … Wikipedia
Basis (linear algebra) — Basis vector redirects here. For basis vector in the context of crystals, see crystal structure. For a more general concept in physics, see frame of reference. In linear algebra, a basis is a set of linearly independent vectors that, in a linear… … Wikipedia
Topological manifold — In mathematics, a topological manifold is a Hausdorff topological space which looks locally like Euclidean space in a sense defined below. Topological manifolds form an important class of topological spaces with applications throughout… … Wikipedia
Topological property — In topology and related areas of mathematics a topological property or topological invariant is a property of a topological space which is invariant under homeomorphisms. That is, a property of spaces is a topological property if whenever a space … Wikipedia
Topological tensor product — In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well behaved theory of tensor products (see Tensor product of … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Dual space — In mathematics, any vector space, V, has a corresponding dual vector space (or just dual space for short) consisting of all linear functionals on V. Dual vector spaces defined on finite dimensional vector spaces can be used for defining tensors… … Wikipedia
Tychonoff space — Separation Axioms in Topological Spaces Kolmogorov (T0) version T0 | T1 | T2 | T2½ | completely T2 T3 | T3½ | T4 | T5 | T6 In topology and related branches of mathematic … Wikipedia
Schauder basis — In mathematics, a Schauder basis or countable basis is similar to the usual (Hamel) basis of a vector space; the difference is that Hamel bases use linear combinations that are finite sums, while for Schauder bases they may be infinite sums. This … Wikipedia
Covering space — A covering map satisfies the local triviality condition. Intuitively, such maps locally project a stack of pancakes above an open region, U, onto U. In mathematics, more specifically algebraic topology, a covering map is a continuous surjective… … Wikipedia